
  

BOLT12
● Reusable Payment Codes – necessary for prism accounting!
● Receiver Privacy – Route Blinding (hide receiver node pubkey)
● Issue unique BOLT12 offers for each “line-of-accounting.”
● No web server required. Eliminates unnecessary 

dependencies
● Recurrence and payout triggers (e.g., amount)
● Withdraw Offers (recipient of sats can initiate withdrawl)
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Agenda
● Prisms: What is a Prism? Why BOLT12?
● roygbiv.guide: a BOLT12-Prism-native Website
● LNPlay Prism Simulation featuring Clams 

Remote 



  

What is a Lightning Prism?



  

What is a Lightning Prism?
● A [LN] Prism is a construct that allows for 

“lightning address value split workflows”
– Prism identified by address (LN Address, BOLT12 

offer, pubkey for keysend, etc)
– Has one or more members (acts as a proxy)
– Another prism can be one of the recipients 

(composable)
– Splits are defined programmatically



  



  

Why are Prisms interesting?
● Prisms are composable

– Have the ability to interconnect and integrate different parts 
together to build a whole (like legos).

● Prisms can help automate your sats flows.
– Set payout criteria

● Prisms can buffer your sats flows.
– Useful for offline nodes or liquidity issues
– Make payouts more consistent by adding payout_threshold



  

Prism Composability
● Composability  - idea that a component 

(prism) can be combined and recombined in 
various ways to create new functionality.



  

Prism Use Cases
● Value4Value Websites* -  that split tips among the posts various authors, editors, 

reviewers, etc.
● Shopping Carts – construct an offer backed by a Prism that splits payments to item 

offers, taxes, fees, profits, etc.
● Stock Ownership – split is like shares which entitle you to a percentage of overall 

profits of sats flows.
● Employer Matching – employee contributions to a prism (which can be line-of-

accounting) can be matched: e.g., total outlays are 110% of income amount.
● Communal Tip Jars – create a Prism Offer that splits tips among serving staff, bar 

staff, kitchen, etc.
● Band Prisms* – Create a prism that splits tips among band members.



  



  

Definitions
● Prism – a construct on Lightning Network for splitting incoming payments.
● Prism Policy – a JSON document that represents prism policy.
● Member – each prism has ONE OR MORE members
● Split – a float representing member’s relative percentage of the total outlays.
● Binding – bindings are created when you apply a prism to a BOLT12 offer. At 

this point, we track outlays (state) and treat sats on the offer as a flow.
● Payout – when a prism is  are sent sats
● outlay_msat – an amount to be spent on the destination of a member.
● payout_threshold – payouts are only triggered when outlays exceed this 

value .
● destination – a BOLT12 offer (e.g., ‘lno…’) representing the member payee 

(remote/local).



  

bolt12-prism API

./lightning-cli.sh help | grep prism
    prism-addbinding prism_id [offer_id]
    prism-create members [description] [outlay_factor]
    prism-delete prism_id
    prism-deletebinding [offer_id]
    prism-list [prism_id]
    prism-listbindings [offer_id]
    prism-pay prism_id [amount_msat] [label]
    prism-setoutlay [offer_id] [member_id] [new_outlay_msat]
    prism-update prism_id members



  

lightning-cli prism-list
{
   "prisms": [
      {
         "prism_id": "8594cf28d393bff1d1dd7577731cc6300119fdeab03bd20a86290b34730c9a21",
         "description": "Band Prism",
         "timestamp": 1729605449,
         "outlay_factor": 0.6667,
         "prism_members": [
            {
               "member_id": "328e37134bdd92870c19b65907d0f4be265110f2eb27f28d89270897a2daf5b6",
               "description": "Drummer",
               "destination": "lno1qgsqvgnwgcg35z6ee2h3yczraddm72xrfua9uve2rlrm9deudeun05rxuvfc",
               "split": 1.0,
               "fees_incurred_by": "local",
               "payout_threshold_msat": 5000000
            },
            {
               "member_id": "1bd50184ed88136a9630b7a5711071b5b807c44e089d5fb6a122da272338d9a9",
               "description": "Guitarist",
               "destination": "lno1qgsqvgnwgcg35z6ee2h3yczraddm72xrf6cup0829ywruqg77h4zmpzs8xthx",
               "split": 1.0,
               "fees_incurred_by": "remote",
               "payout_threshold_msat": 5000000
            }
         ]
      }
   ]
}



  

lightning-cli prism-listbindings
{
   "bolt12_prism_bindings": [
      {
         "offer_id": "b47a195e3b768933308b93ce16f3fa2036e1b6ed80c202f4e7ff0354aff3ab24",
         "prism_id": "0e38b824f6bc6e0c8946fa2ca5c68fd28757dfaebc27e8b632250b81e09aea82",
         "timestamp": 1729910682,
         "member_outlays": [
            {
               "member_id": "813fe892cc0f4bf41fd6301c606dcebd47247735b92152129b6f42f3c4d7a",
               "outlay_msat": 0
            },
            {
               "member_id": "16033ce59d0750f638ec30d182680d7a8e3a45db7c2ad18311d126f7be19",
               "outlay_msat": 0
            },
            {
               "member_id": "a48a8b351386ee8fb9a4336daf46402c4e5b5fc3f9d5d21e495f434ef0ed8",
               "outlay_msat": 0
            }
         ]
      }
   ]
}



  

Plugin workflow 1
● CLN Plugin listens for “invoice_payment” 

event
● Label: “offer_id-invoice_id”



  

Plugin Workflow 2
● Plugin checks if there is a binding
● If so, calculate and increase member outlays 

according to split
● Outlays remain UNTIL a payout succeeds.
● Outlay decreases only when payout succeeds! 

– Total amount depends on who is paying for fees!



  

Public/Private Prisms

● Gigi: “Users should have a way to see how payments are split 
that is both easy to understand and verify”.
– e.g., NIP-33 – replaceable events.

● BOLT12-Prisms are private by default.
● You can make them public via Lightning Network (e.g., 

commando+rune) or by exposing outlay/prism info via HTMX 
or JSON, etc.



  

Plugin Design Goals
● ATOMICITY in Prism payouts are NOT DESIRABLE nor 

doable (without protocol support).
– Payout fees ( are known only AFTER the payment succeeds)
– Hard to split 100 sats when fees aren’t known ahead of 

time

● Outlay tracking helps deal with offline nodes or 
unpayable invoices (e.g., due to liquidity).



  

Prism DB Structure

"prism_binding_key": [
      "prism",
      "v2.1",
      "bind",
      "bolt12",
      
"f1e8ea8617a24b321d8de0
a41c1177b106beab578fff29
a844d0a39727660cd8"
   ],



  

Loops
● If we view sats as flows like 

packets on the Internet, then
● Very important to avoid loops!

– Fees dis-incentivize Loops.
– Locally we must ensure the all 

Prisms form a DAG.
– Other mitigation includes “TTL” 

on sats?  
– Need: Prism Explorer prism-a

prism-b

prism-c

1.0

1.0

1.0

1.0

1.0

1.0



  

Ideas to implement
● Support BIP353 & npub destinations
● Scheduled Outlay Clearing

– Right now, outlay clearing occurs only when there’s an income event 
and when destination node is online and payable

● Issue BOLT12 Withdraw offers to clear outlays
– Notify destination over nostr?

● Explicit Pay-to-self
– Preventing local loops



  

The problem of self-pay
● Assume there’s a prism.
● One of the members of the prism hosts the Prism (i.e., runs 

the Lightning Node).
– In other words, one of the “payouts” should go to the prism host.

● Solution: pay-to-self
– Implicit: we retain sats by reducing total outlays
– Explicit: we create a member with a destination (offer) that we 

issued*



  

/



  

LNPlay Prism Simulation
● LNPlay is a Lightning Network Simulator 

(FOSS)
● Clams Remote just added support for BOLT12-

Prisms :)
● Leave feedback  send email to 🙏

feedback@roygbiv.guide



  

lnplay.guide/prism
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Prism Ambassadors
● Randy Naar – Works on Blockstream Greenlight
● Michael Evans – created lnplay.network and 

created PoC for Clams Remote Prism feature
● Vake – Top V4V Booster
● Stephen DeLorme – ATL Bitlab / Bitcoin Design 

Community



  

For each group:
● Each group is composed of a Prism Ambassador, a Bob, and the rest are prism members.
● Bob creates and hosts the Band Prism, but first he needs to create a new offer (call it 

the Band Prism Offer). This will be the offer that when paid to by the Prism Ambassador, 
triggers the band prism.

● Every member in each group creates an Any Offer. Show the QR code so it can be 
scanned by Bob as he constructs the prism.

● On Bob, create the Band Prism policy by scanning the any offers on the members. Bob 
should set the outlay_factor to 0.8% as he's taking a 20% cut of the proceeds (implicit 
pay-to-self of 20%).

● Bob binds the Prism to the Band Prism Offer he created earlier.
● The Prism Ambassador pays to the Band Prism Offer hosted on Bob.



  

feedback@roygbiv.guide



  

Who to thank
● Core Lightning (for implementing pay-to-self, and generally for the 

excellent plugin architecture), specifically Vincenzo Palazzo and Rusty 
Russell.

● Michael Evans and John Gribbin for adding support for the BOLT12-Prism 
plugin in Clams Remote.

● And the Clams Remote project for making this simulation possible
● Farscapian & gudnuf & daywalker (tests) for the prism plugin repo.
● Stephen Delorme – created/redesigned bolt12.org
● CLBOSS Project for automated channel management
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