

BOLT12
● Reusable Payment Codes – necessary for prism accounting!
● Receiver Privacy – Route Blinding (hide receiver node pubkey)
● Issue unique BOLT12 offers for each “line-of-accounting.”
● No web server required. Eliminates unnecessary

dependencies
● Recurrence and payout triggers (e.g., amount)
● Withdraw Offers (recipient of sats can initiate withdrawl)

 lnplay.guide/showcase/tabconf2024

tip.
 farscapian.com/
 /about
 /qualifications
 /portfolio

Agenda
● Prisms: What is a Prism? Why BOLT12?
● roygbiv.guide: a BOLT12-Prism-native Website
● LNPlay Prism Simulation featuring Clams

Remote

What is a Lightning Prism?

What is a Lightning Prism?
● A [LN] Prism is a construct that allows for

“lightning address value split workflows”
– Prism identified by address (LN Address, BOLT12

offer, pubkey for keysend, etc)
– Has one or more members (acts as a proxy)
– Another prism can be one of the recipients

(composable)
– Splits are defined programmatically

Why are Prisms interesting?
● Prisms are composable

– Have the ability to interconnect and integrate different parts
together to build a whole (like legos).

● Prisms can help automate your sats flows.
– Set payout criteria

● Prisms can buffer your sats flows.
– Useful for offline nodes or liquidity issues
– Make payouts more consistent by adding payout_threshold

Prism Composability
● Composability - idea that a component

(prism) can be combined and recombined in
various ways to create new functionality.

Prism Use Cases
● Value4Value Websites* - that split tips among the posts various authors, editors,

reviewers, etc.
● Shopping Carts – construct an offer backed by a Prism that splits payments to item

offers, taxes, fees, profits, etc.
● Stock Ownership – split is like shares which entitle you to a percentage of overall

profits of sats flows.
● Employer Matching – employee contributions to a prism (which can be line-of-

accounting) can be matched: e.g., total outlays are 110% of income amount.
● Communal Tip Jars – create a Prism Offer that splits tips among serving staff, bar

staff, kitchen, etc.
● Band Prisms* – Create a prism that splits tips among band members.

Definitions
● Prism – a construct on Lightning Network for splitting incoming payments.
● Prism Policy – a JSON document that represents prism policy.
● Member – each prism has ONE OR MORE members
● Split – a float representing member’s relative percentage of the total outlays.
● Binding – bindings are created when you apply a prism to a BOLT12 offer. At

this point, we track outlays (state) and treat sats on the offer as a flow.
● Payout – when a prism is are sent sats
● outlay_msat – an amount to be spent on the destination of a member.
● payout_threshold – payouts are only triggered when outlays exceed this

value .
● destination – a BOLT12 offer (e.g., ‘lno…’) representing the member payee

(remote/local).

bolt12-prism API

./lightning-cli.sh help | grep prism
 prism-addbinding prism_id [offer_id]
 prism-create members [description] [outlay_factor]
 prism-delete prism_id
 prism-deletebinding [offer_id]
 prism-list [prism_id]
 prism-listbindings [offer_id]
 prism-pay prism_id [amount_msat] [label]
 prism-setoutlay [offer_id] [member_id] [new_outlay_msat]
 prism-update prism_id members

lightning-cli prism-list
{
 "prisms": [
 {
 "prism_id": "8594cf28d393bff1d1dd7577731cc6300119fdeab03bd20a86290b34730c9a21",
 "description": "Band Prism",
 "timestamp": 1729605449,
 "outlay_factor": 0.6667,
 "prism_members": [
 {
 "member_id": "328e37134bdd92870c19b65907d0f4be265110f2eb27f28d89270897a2daf5b6",
 "description": "Drummer",
 "destination": "lno1qgsqvgnwgcg35z6ee2h3yczraddm72xrfua9uve2rlrm9deudeun05rxuvfc",
 "split": 1.0,
 "fees_incurred_by": "local",
 "payout_threshold_msat": 5000000
 },
 {
 "member_id": "1bd50184ed88136a9630b7a5711071b5b807c44e089d5fb6a122da272338d9a9",
 "description": "Guitarist",
 "destination": "lno1qgsqvgnwgcg35z6ee2h3yczraddm72xrf6cup0829ywruqg77h4zmpzs8xthx",
 "split": 1.0,
 "fees_incurred_by": "remote",
 "payout_threshold_msat": 5000000
 }
]
 }
]
}

lightning-cli prism-listbindings
{
 "bolt12_prism_bindings": [
 {
 "offer_id": "b47a195e3b768933308b93ce16f3fa2036e1b6ed80c202f4e7ff0354aff3ab24",
 "prism_id": "0e38b824f6bc6e0c8946fa2ca5c68fd28757dfaebc27e8b632250b81e09aea82",
 "timestamp": 1729910682,
 "member_outlays": [
 {
 "member_id": "813fe892cc0f4bf41fd6301c606dcebd47247735b92152129b6f42f3c4d7a",
 "outlay_msat": 0
 },
 {
 "member_id": "16033ce59d0750f638ec30d182680d7a8e3a45db7c2ad18311d126f7be19",
 "outlay_msat": 0
 },
 {
 "member_id": "a48a8b351386ee8fb9a4336daf46402c4e5b5fc3f9d5d21e495f434ef0ed8",
 "outlay_msat": 0
 }
]
 }
]
}

Plugin workflow 1
● CLN Plugin listens for “invoice_payment”

event
● Label: “offer_id-invoice_id”

Plugin Workflow 2
● Plugin checks if there is a binding
● If so, calculate and increase member outlays

according to split
● Outlays remain UNTIL a payout succeeds.
● Outlay decreases only when payout succeeds!

– Total amount depends on who is paying for fees!

Public/Private Prisms

● Gigi: “Users should have a way to see how payments are split
that is both easy to understand and verify”.
– e.g., NIP-33 – replaceable events.

● BOLT12-Prisms are private by default.
● You can make them public via Lightning Network (e.g.,

commando+rune) or by exposing outlay/prism info via HTMX
or JSON, etc.

Plugin Design Goals
● ATOMICITY in Prism payouts are NOT DESIRABLE nor

doable (without protocol support).
– Payout fees (are known only AFTER the payment succeeds)
– Hard to split 100 sats when fees aren’t known ahead of

time

● Outlay tracking helps deal with offline nodes or
unpayable invoices (e.g., due to liquidity).

Prism DB Structure

"prism_binding_key": [
 "prism",
 "v2.1",
 "bind",
 "bolt12",

"f1e8ea8617a24b321d8de0
a41c1177b106beab578fff29
a844d0a39727660cd8"
],

Loops
● If we view sats as flows like

packets on the Internet, then
● Very important to avoid loops!

– Fees dis-incentivize Loops.
– Locally we must ensure the all

Prisms form a DAG.
– Other mitigation includes “TTL”

on sats?
– Need: Prism Explorer prism-a

prism-b

prism-c

1.0

1.0

1.0

1.0

1.0

1.0

Ideas to implement
● Support BIP353 & npub destinations
● Scheduled Outlay Clearing

– Right now, outlay clearing occurs only when there’s an income event
and when destination node is online and payable

● Issue BOLT12 Withdraw offers to clear outlays
– Notify destination over nostr?

● Explicit Pay-to-self
– Preventing local loops

The problem of self-pay
● Assume there’s a prism.
● One of the members of the prism hosts the Prism (i.e., runs

the Lightning Node).
– In other words, one of the “payouts” should go to the prism host.

● Solution: pay-to-self
– Implicit: we retain sats by reducing total outlays
– Explicit: we create a member with a destination (offer) that we

issued*

/

LNPlay Prism Simulation
● LNPlay is a Lightning Network Simulator

(FOSS)
● Clams Remote just added support for BOLT12-

Prisms :)
● Leave feedback send email to 🙏

feedback@roygbiv.guide

lnplay.guide/prism

Channel
Graph

Lnplay.network

Prism Ambassadors
● Randy Naar – Works on Blockstream Greenlight
● Michael Evans – created lnplay.network and

created PoC for Clams Remote Prism feature
● Vake – Top V4V Booster
● Stephen DeLorme – ATL Bitlab / Bitcoin Design

Community

For each group:
● Each group is composed of a Prism Ambassador, a Bob, and the rest are prism members.
● Bob creates and hosts the Band Prism, but first he needs to create a new offer (call it

the Band Prism Offer). This will be the offer that when paid to by the Prism Ambassador,
triggers the band prism.

● Every member in each group creates an Any Offer. Show the QR code so it can be
scanned by Bob as he constructs the prism.

● On Bob, create the Band Prism policy by scanning the any offers on the members. Bob
should set the outlay_factor to 0.8% as he's taking a 20% cut of the proceeds (implicit
pay-to-self of 20%).

● Bob binds the Prism to the Band Prism Offer he created earlier.
● The Prism Ambassador pays to the Band Prism Offer hosted on Bob.

feedback@roygbiv.guide

Who to thank
● Core Lightning (for implementing pay-to-self, and generally for the

excellent plugin architecture), specifically Vincenzo Palazzo and Rusty
Russell.

● Michael Evans and John Gribbin for adding support for the BOLT12-Prism
plugin in Clams Remote.

● And the Clams Remote project for making this simulation possible
● Farscapian & gudnuf & daywalker (tests) for the prism plugin repo.
● Stephen Delorme – created/redesigned bolt12.org
● CLBOSS Project for automated channel management

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

